SFUSD Mathematics
  • Home
  • SFUSD Math
    • Contact
    • Our Vision >
      • Guiding Principles for School Mathematics
    • Secondary Course Sequence >
      • High School Pathways
      • Math Validation Test
      • Summer School Geometry
    • Conference & Community Presentations
    • In the News
    • FAQ >
      • Secondary Math FAQ
  • Curriculum
    • CCSS-M: The Common Core State Standards for Mathematics >
      • Standards for Math Practice
      • Overlapping Standards - Math, Science and ELA
    • The SFUSD Math Core Curriculum >
      • Using the Units
      • What does it mean to use the core curriculum?
      • History of the SFUSD Curriculum
      • Curriculum Development Teams
    • Accessing Core Curriculum Unit Plans >
      • Google Classroom
      • About the SFUSD Elementary Math Core Curriculum
    • Assessment
    • Feedback
    • Multilingual Glossary >
      • Multilingual Standards for Math Practice and Math Norms
  • TOOLKIT
    • Teaching Strategies >
      • Signature Strategies >
        • Math Talks >
          • Math Talks Resources
          • Sample Math Talks
        • Participation Quiz / Groupwork Feedback
        • 3-Read Protocol >
          • 3-Read Protocol for Kindergarten
      • Class Norms
      • Collaborative Group Work >
        • Group Roles
        • 3 Act Tasks
        • Group Work Success
        • Multiple Abilities Strategy
      • Math is For Everyone >
        • Teaching With Rich Math Tasks
        • Productive Struggle
        • Response to Intervention in Mathematics
        • Universal Design for Learning
        • Growth Mindset
      • Strategy Videos
    • Classroom Engagement >
      • 5 Practices for Orchestrating Productive Math Discussions >
        • Teaching Through Problem-Solving >
          • Using SFUSD Core Curriculum with TTP
      • Promoting Classroom Discourse >
        • Effective Questioning
        • Student Vital Actions
      • Formative Assessment >
        • Reengagement
        • Formative Assessment Lessons
        • Rubrics
      • Classroom Tools >
        • Manipulatives >
          • Manipulatives List
        • Centers
        • Math Notebooks
        • Rule of Four
        • Gallery Walk
        • Schedules
    • Math Content Support >
      • Partitive and Quotitive Division
      • Estimation
      • Fluency
      • Visual Model Progressions
      • Math Concept Videos
    • Professional Learning >
      • Beginning of Year Launch K-5
      • Collaborative Planning
  • Students
  • Educators
    • Complex Instruction
    • Site Based Support
    • Early Education
    • Resources >
      • Articles of Interest
      • Helpful Videos
      • Blogs and Other Resources
  • Families + Community
    • Resources for Families and Community >
      • Websites for Families and the Community
      • Family Letters
      • SF Loves Learning
    • Recursos Para Familias y la Comunidad
Picture

The 3-Read Protocol

Download the description of the 3-Read Protocol from our Math Teaching Toolkit
3-Read Protocol
Watch videos of a 3-Read Protocol
Videos
What might a 3-Read look like in Kindergarten or 1st grade? 
Kinder / 1st Grade 3-Read
Picture
The Three Read Protocol is one way to do a close read of a complex math word problem or task. This strategy includes reading a math scenario three times with a different goal each time. The first read is to understand the context. The second read is to understand the mathematics. The third read is to elicit inquiry questions based on the scenario.

Why would I use this strategy?

The Three Read Protocol is designed to engage students in sense-making of language-rich math problems or tasks. It deepens student understanding by surfacing linguistic as well as mathematical clues. It focuses attention on the importance of understanding problems rather than rapidly trying to solve them. It allows for the use of authentic, instead of overly simplified, text. This strategy also allows for natural differentiation within a class of diverse learners.

When do I use this strategy?

This strategy can be used for math tasks that include complex language structures or language that lends itself to a variety of interpretations. While this is a particularly useful strategy for English Language Learners, all students can benefit from the deeper understanding of word problem structures and open-ended questioning.

How do I use this strategy?

The Three Read Protocol uses the “problem stem” of a word problem. This is essentially the word problem without the question at the end. The purpose of presenting the problem stem alone is to have students focus on the contextual and mathematical information before dealing with any question that is involved. This gives students the freedom to create their own questions for a given scenario, which is an excellent skill to develop both in math and in reading in general. It is important that the teacher choose the problem carefully and anticipate potential linguistic and mathematical roadblocks the students may encounter.

1. First Read: Teacher reads the problem stem orally.

The teacher may have visuals to accompany the oral read of the problem stem. Students listen to the story with the goal of turning to a partner and sharing what they remember of it. Memorizing it is not necessary. Students may act out the problem if that helps them grasp the context.

Key Question: What is this situation about?

After the Turn-and-Talk, the teacher asks students to volunteer information they remember from the story. Teachers and students ask clarifying questions about the vocabulary as needed.

2. Second Read: Class does choral read or partner read of the problem stem.

The teacher projects the problem stem so the whole class can see it. The teacher leads the class either in a choral read of the problem or has partners read the problem orally to each other. Choral read is preferable because it allows all students to participate without excessive pressure, but a partner read can work fine if that is a better fit to the classroom culture or age of students. The teacher explains that math stories usually have information about quantities (numbers) and the units that are being counted.

Key Question: What are the quantities in the situation?

An example is 25 cats, where “25” is the quantity and “cat” is the unit. Sometimes the quantities are implied. For example, “some cats” implies a quantity but we do not know what it is. There can also be implied units. An example is “I have one at home.” The implied unit in this case depends on the context of the story. Bottom line: The discussion of quantities and units can be important for focusing student attention, but how deeply the teacher delves into the explicit and implicit information depends on the math and language objectives.

3. Third Read: Partner or choral read the problem stem orally one more time.

The teacher asks students to do one more read of the “story” and asks them to think, “What is missing to make this a good math problem?” Students volunteer their answers to that question. Responses will likely vary because many students assume there is a question without actually reading one. Without correcting student responses, the teacher probes until the class decides that a question is missing. The teacher asks, “Is there only one question that we can ask of this story?” Students responses may vary, but there are usually many different questions that can be asked of almost any scenario.

Key Question: What mathematical questions can we ask about the situation?

The teacher asks partners to determine at least two questions that can be asked using the problem stem. Students share their questions. The teacher writes a couple of the questions and clarifies language as appropriate. After each question, the teacher asks the class, “Can this question be answered with the information from this story?” and the class discusses why or why not. 


4. Students work in collaborative groups on the problem.

Students work in groups to solve a question based on the problem stem. The teacher may assign a specific question for all groups to answer, or groups may choose a question from the list asked by the class. If groups are asked to choose their own questions, it is important that the teacher circulate and clarify expectations for the work. This can be an opportunity to differentiate the math work because the range of possible questions to a problem stem is broad.

Picture
SFUSD 
Website
Picture
​SFUSD Technology
Picture
SFUSD 
Science
Picture
SFUSD Multilingual Pathways
Picture
SFUSD
Special
Education
Picture
SFUSD
Achievement
Assessment
Office