The fundamental purpose of the Geometry course is to formalize and extend students’ geometric experiences from the middle grades. This course includes standards from the conceptual categories of Geometry and Statistics and Probability. Some standards are repeated in multiple higher mathematics courses; therefore instructional notes, which appear in brackets, indicate what is appropriate for study in this particular course.

In this Geometry course, students explore more complex geometric situations and deepen their explanations of geometric relationships, presenting and hearing formal mathematical arguments. Important differences exist between this course and the historical approach taken in geometry classes. For example, transformations are emphasized in this course.

For the Geometry course, instructional time should focus on six critical areas: (1) establish criteria for congruence of triangles based on rigid motions; (2) establish criteria for similarity of triangles based on dilations and proportional reasoning; (3) informally develop explanations of circumference, area, and volume formulas; (4) apply the Pythagorean Theorem to the coordinate plan; (5) prove basic geometric theorems; and (6) extend work with probability.

(1) Students have prior experience with drawing triangles based on given measurements and performing rigid motions including translations, reflections, and rotations. They have used these to develop notions about what it means for two objects to be congruent. In this course, students establish triangle congruence criteria, based on analyses of rigid motions and formal constructions. They use triangle congruence as a familiar foundation for the development of formal proof. Students prove theorems—using a variety of formats including deductive and inductive reasoning and proof by contradiction—and solve problems about triangles, quadrilaterals, and other polygons. They apply reasoning to complete geometric constructions and explain why they work.

(2) Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity. They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to understand right triangle trigonometry, with particular attention to special right triangles and the Pythagorean Theorem. Students derive the Laws of Sines and Cosines in order to find missing measures of general (not necessarily right) triangles, building on their work with quadratic equations done in Algebra I. They are able to distinguish whether three given measures (angles or sides) define 0, 1, 2, or infinitely many triangles.

(3) Students’ experience with three-dimensional objects is extended to include informal explanations of circumference, area, and volume formulas. Additionally, students apply their knowledge of two-dimensional shapes to consider the shapes of cross-sections and the result of rotating a two-dimensional object about a line.

(4) Building on their work with the Pythagorean Theorem to find distances, students use the rectangular coordinate system to verify geometric relationships, including properties of special triangles and quadrilaterals, and slopes of parallel and perpendicular lines, which relates back to work done in the Algebra I course. Students continue their study of quadratics by connecting the geometric and algebraic definitions of the parabola.

(5) Students prove basic theorems about circles, with particular attention to perpendicularity and inscribed angles, in order to see symmetry in circles and as an application of triangle congruence criteria. They study relationships among segments on chords, secants, and tangents as an application of similarity. In the Cartesian coordinate system, students use the distance formula to write the equation of a circle when given the radius and the coordinates of its center. Given an equation of a

Note: The source of this introduction is the Massachusetts Curriculum Framework for Mathematics (Malden: Massachusetts Department of Elementary and Secondary Education, 2011), 116-17.
circle, they draw the graph in the coordinate plane, and apply techniques for solving quadratic equations—which relates back to work done in the Algebra I course—to determine intersections between lines and circles or parabolas and between two circles.

(6) Building on probability concepts that began in the middle grades, students use the language of set theory to expand their ability to compute and interpret theoretical and experimental probabilities for compound events, attending to mutually exclusive events, independent events, and conditional probability. Students should make use of geometric probability models wherever possible. They use probability to make informed decisions.

The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years.
Geometry Overview

Geometry

Congruence
- Experiment with transformations in the plane.
- Understand congruence in terms of rigid motions.
- Prove geometric theorems.
- Make geometric constructions.

Similarity, Right Triangles, and Trigonometry
- Understand similarity in terms of similarity transformations.
- Prove theorems involving similarity.
- Define trigonometric ratios and solve problems involving right triangles.
- Apply trigonometry to general triangles.

Circles
- Understand and apply theorems about circles.
- Find arc lengths and area of sectors of circles.

Expressing Geometric Properties with Equations
- Translate between the geometric description and the equation for a conic section.
- Use coordinates to prove simple geometric theorems algebraically.

Geometric Measurement and Dimension
- Explain volume formulas and use them to solve problems.
- Visualize relationships between two-dimensional and three-dimensional objects.

Modeling with Geometry
- Apply geometric concepts in modeling situations.

Statistics and Probability

Conditional Probability and the Rules of Probability
- Understand independence and conditional probability and use them to interpret data.
- Use the rules of probability to compute probabilities of compound events in a uniform probability model.

Using Probability to Make Decisions
- Use probability to evaluate outcomes of decisions.

Mathematical Practices
1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.
Experiment with transformations in the plane.

1. Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.

2. Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).

3. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

4. Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments.

5. Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Understand congruence in terms of rigid motions. [Build on rigid motions as a familiar starting point for development of concept of geometric proof.]

6. Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.

7. Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.

8. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.

Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]

9. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment’s endpoints.

10. Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.

11. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Make geometric constructions. [Formalize and explain processes.]

12. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.

13. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.
Understand similarity in terms of similarity transformations.
1. Verify experimentally the properties of dilations given by a center and a scale factor:
 a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through
 the center unchanged.
 b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.
2. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain
 using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles
 and the proportionality of all corresponding pairs of sides.
3. Use the properties of similarity transformations to establish the Angle-Angle (AA) criterion for two triangles to be similar.

Prove theorems involving similarity.
4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally,
 and conversely; the Pythagorean Theorem proved using triangle similarity.
5. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Define trigonometric ratios and solve problems involving right triangles.
6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions
 of trigonometric ratios for acute angles.
7. Explain and use the relationship between the sine and cosine of complementary angles.
8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. ★
8.1 Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90° and 45°, 45°, 90°). CA

Apply trigonometry to general triangles.
9. (+) Derive the formula \(A = \frac{1}{2} ab \sin(C) \) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular
 to the opposite side.
10. (+) Prove the Laws of Sines and Cosines and use them to solve problems.
11. (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right
 triangles (e.g., surveying problems, resultant forces).

Understand and apply theorems about circles.
1. Prove that all circles are similar.
2. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central,
 inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular
to the tangent where the radius intersects the circle.

Note: ★ Indicates a modeling standard linking mathematics to everyday life, work, and decision-making. (+) Indicates additional mathematics to prepare
students for advanced courses.
3. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

4. (+) Construct a tangent line from a point outside a given circle to the circle.

Find arc lengths and areas of sectors of circles. [Radian introduced only as unit of measure]

5. Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. Convert between degrees and radians. CA

Expressing Geometric Properties with Equations

Translate between the geometric description and the equation for a conic section.

1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.

2. Derive the equation of a parabola given a focus and directrix.

Use coordinates to prove simple geometric theorems algebraically. [Include distance formula; relate to Pythagorean Theorem.]

4. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, \sqrt{3}) lies on the circle centered at the origin and containing the point (0, 2).

5. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point).

6. Find the point on a directed line segment between two given points that partitions the segment in a given ratio.

7. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.

Geometric Measurement and Dimension

Explain volume formulas and use them to solve problems.

1. Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri’s principle, and informal limit arguments.

3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

Visualize relationships between two-dimensional and three-dimensional objects.

4. Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects.

5. Know that the effect of a scale factor \(k\) greater than zero on length, area, and volume is to multiply each by \(k\), \(k^2\), and \(k^3\), respectively; determine length, area and volume measures using scale factors. CA

6. Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve real-world and mathematical problems. CA
Modeling with Geometry

Apply geometric concepts in modeling situations.
1. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
2. Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).
3. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).

Statistics and Probability

Conditional Probability and the Rules of Probability

Understand independence and conditional probability and use them to interpret data. [Link to data from simulations or experiments.]
1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events (“or,” “and,” “not”).
2. Understand that two events are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
3. Understand the conditional probability of A given B as $P(A \text{ and } B)/P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.
4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.
5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations.

Use the rules of probability to compute probabilities of compound events in a uniform probability model.
6. Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret the answer in terms of the model.
7. Apply the Addition Rule, $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$, and interpret the answer in terms of the model.
8. (+) Apply the general Multiplication Rule in a uniform probability model, $P(A \text{ and } B) = P(A)P(B|A) = P(B)P(A|B)$, and interpret the answer in terms of the model.
9. (+) Use permutations and combinations to compute probabilities of compound events and solve problems.
Using Probability to Make Decisions

Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]

6. (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). ★

7. (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). ★